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Least-Weighted-Square Method for Analysis
and Synthesis of Transmission Lines

N. SESHAGIRI, MEMBER, IEEE

Abstract—Analysis and synthesis of transmission lines of arbitrary
geometry are not easy to realize with currently available methods. The object
of this paper is to show that by introducing a new principle to be called the
“Jeast-weighted-square invariance deformation,” it is possible to solve trans-
mission line problems to desired orders of accuracy. A procedure based on this
principle is given for deforming a given transmission line geometry keeping
the characteristic impedance an invariant, or for synthesizing a transmission
line cross-sectional geometry corresponding to the given constant parameters
of the structure. The method is applied to the analysis of transmission lines
having a regular polygonal outer conductor and a circular inner conductor.
An application to a representative situation in synthesis is also described.

I. INTRODUCTION

HOUGH TRANSMISSION lines have been analyzed
T exactly for a few simple geometries, there appears to

be no general procedure for obtaining explicit analyti-
cal expressions for parameters like the characteristic im-
pedance when the geometry is arbitrary and involves many
conductors. The synthesis problem, that of designing a
suitable cross-sectional geometry for the simultaneous
specification of the values of certain electrical and mechani-
cal parameters, has not been investigated so far. The object
of this paper is to describe a method based on a new prin-
ciple to be called “least-weighted-square invariance de-
formation” and to apply it to problems in both analysis and
synthesis. Though the parameter considered throughout the
paper is the characteristic impedance, the principle itself is
of wider applicability.

The subject matter of the paper is treated in the follow-
ing order. The least-weighted-square deformation principle
is first described, showing how a structure can be deformed
from one shape to another without changing the character-
istic impedance per unit length or any other unique parame-
ter of the structure. This method is applied to the analysis of
a transmission line with a circular inner conductor and a
regular polygonal outer conductor, and expressions for the
characteristic impedance and the TEM wave are derived.
Section IV gives a description of the synthesis problem from
the field theoretic viewpoint as encountered in transmission
line theory. Methods are given for designing transmission
line geometry for the specified electrical and mechanical
requirements. In the last section, an extension of the methods
of the previous section to transmission lines with more than
two conductors is discussed. In the Appendix, a justifica-
tion for the theorem utilized in the main body of the paper is
given, together with the description of a method for evalua-
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ting certain universal constants associated with transmission
lines.

II. LEAST-WEIGHTED-SQUARE DEFORMATION PRINCIPLE

It may be required, sometimes, to analyze an electro-
magnetic structure whose boundary configuration is very
nearly that of one which has been analyzed previously.
Situations may also arise wherein a structure to be analyzed,
on being conformally transformed by known analytic func-
tions, may come close to a known analyzed structure. In
such cases, it is possible to find the dimensions of the
analyzed structure that has the same characteristic imped-
ance as the given structure, which has not been analyzed
before, by using the methods based on the principle of least-
weighted-square deformation explained below.

Description in the present section is confined to the case
of determining the characteristic impedance of two, long,
open plates and of TEM structures with a circular inner
conductor and an outer conductor of arbitrary shape
capable of being described by a power series. It should be
noted that when both conductors are of arbitrary geometry,
the following method is still useful, though it may be re-
quired to deform each conductor one after the other.

In Fig. 1(a) or (b), curve 4, is the boundary which remains
unchanged during the transformation; curve A, is the
boundary to be deformed; and curve A, is the deformed
form of curve A, such that the characteristic impedance
between A4; and A4, is the same as that between 4, and 4,. If
Apjand A, ;are known constants, and 4, ; are undetermined
coefficients, then the three functions describing 4,, 4,, A,
are, in Cartesian coordinates (x, y),

i
_ IR At O
B AT (e < xS i = 0,12, (1)

or in polar coordinates (r, 8),
t
r, = Z AUGJ—I, (HA.I < 0 < GA,Z; i= 0’ 19 2) (2)
j=1
By representing A,, as explicit functions of not more than
t parametric variables, retaining at least a single degree of
freedom, it is possible to choose the particular form of the
perturbed boundary though not the actual dimensions.

Thus, for a maximum of t degrees of freedom, the parametric
form of the coefficients will be

Ag; = [ 820577, &) J=12-¢ 3)

The deformation of curve A, to curve 45, in such a way
as to keep the characteristic impedance an invariant under
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(@) (b}
Transformation of boundaries in transmission lines
with two conductors.

Fig. 1.

such a deformation, is described in two steps. A theorem
for the existence of a weighting function governing the least-
weighted-square principle is stated first. This is followed by
the derivation of explicit expressions for the undetermined
coeflicients 4, ;, together with a method for evaluating &,,

52"“’ft'

The theorem requires the definition of the following five
terms.
Definition 1

The least Newtonian path length is the shortest distance
between two given points, one on each of two boundary
curves, such that the entire path is within the annular region.

Definition 2
Two boundaries are mutually compatible if the end points

of the least Newtonian path trace both the boundaries
continuously and entirely.

Definition 3

A structure-parameter set of an n-dimensional structure is
a set of n independent parameters which determines the
size, shape, and dimensions of the structure uniquely.

Definition 4
A superficial magnification is defined to be possible if the

structure parameters remain invariant under any pro-
portionate change in the dimensions of the entire structure.

Definition 5
Weighting function of the least Newtonian path length is
a function deciding the relative deformations of various

sections of a curve representing a boundary that is being
deformed by the least-square criteria [1].

Theorem

A deformation of one of the boundaries of a transmission
line, keeping the other boundaries unperturbed, leaves the
structure parameters that maintain invariancy under a
superficial magnification, invariant under the deformation
if the sum of weighted squares of ordinate (or radius vector)
dewviations, represented by

X2 [_ t -1 t i 1 2

(in Cartesian coordinates)

2nf/ ¢t ) t 1 2
W= A, 0071 — A 0071 do
J1CE a5 o) e

(in polar coordinates)

495

is a minimum, where F[d(x)] or F[d(6)], which is a weighting
function of the least Newtonian path length d(x) or d(0)
corresponding to any x or 6, respectively, exists for mutually
compatible, power series describable boundaries.
A justification for this theorem is given in the Appendix.
It is shown there that
1) there exists a set of universal dimensionless constants
defining the weightages F[d(x)] or F[d(6)];
2) for structures governed by Laplace’s equation or for
those in the TEM mode, a weighting function is given
by

Fld)] = [1/dx)]* or F[dO)] = [1/dOF, (6

where s is a universal constant (i.e., independent of the
shape, size, or dimensions of the structure) and given
by
s = 1.202 (Cartesian)
= 1.251 (polar).
It was observed in the above theorem that (4) or (5) should

be a minimum. This is true if, on substituting (3) into (4)
or (5),

Since C; are explicit functions of &, this condition is equiv-
alent to
(7

OW/RC; =0;  j=1,2--,1

subjected to the conditions of (3). Consequently, &, can be
evaluated. By a well-known procedure attributed to Gauss
(see Sokolnikoff and Redheffer [1]) the modified (weighted)
normal equations can be derived from (6), (7), and (4) or (5).
The normal equations in Cartesian coordinates, using
matrix notations, are

ICili =
‘J‘xz xiti=2 gx
1)« [dea]*

Equation (8) can be written in the “limit of a sum™ form as

-1 T

*2p %' dx
o LT |

13

(8)

!

I Ji=1,2,000,t

leily =

i LN § )
m-owo =1 [d(xl)]Zs 5Hi=1,2, timool=1 [d(xl)]Zs

where y,, is equal to the value of y, at x;, and, similarly, in
polar coordinates as

T

9

Icli =

m 9;'+j—2 -1 T

lim ). CO)T

i—1
rud

im § ot

j,i=1,2,‘“,t‘

(10)

i

where r,, is equal to the value of r; at 6,.
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In the next section, the preceding method is applied to the
analysis of a transmission line with circular inner con-
ductor and a regular polygonal outer conductor, and the
results are verified by comparing them with those obtained
by other methods.

[11. APPLICATION TO THE ANALYSIS OF POLYGON-CIRCULAR
TRANSMISSION LiINES

In this section, it is intended to show that the least-
weighted-square deformation can be applied in conjunc-
tion with known conformal transformations to arrive at the
characteristic impedance or the TEM wave equation ex-
plicitly in terms of the physical dimensions of the trans-
mission line. As an example, a transmission line with a
circular inner conductor, a regular polygonal outer con-
ductor, and a perfect dielectric annulus is taken. For this
family of transmission lines an explicit relation for the char-
acteristic impedance is available only for the square-circle
configuration, whereas the TEM wave equation has not
been derived for any member of this family. It should be
noted in the following derivations that among the regular
ngons considered, n=2 does not correspond to parallel
planes but to an ellipse having finite major diameter. This
structure has been analyzed by the author in previous com-
munications [2], [3]. Therefore, in what follows, only those
structures with n=3 to oo are considered. The first part is
confined to the derivation of the characteristic impedance
of this family, and in the second part the TEM equations are
derived.

A. Characteristic Impedance

A conformal transformation W= Z" maps the ngon of side
2a and an inner conductor of radius #; onto n identical
Riemann sheets [4], each sheet having a circular inner
boundary of radius #} and an outer boundary described in
polar form (R, ®) by

R(a, n, ®) = a" cot” (n/n) sec” (ﬂ),
n

0O = 0 to 2z radians. (11)

Each of the n sheets can be deformed, using the least-
weighted-square principle, into an elliptic outer conductor
and a noncoaxial circular inner conductor. Let this ellipse
have a semimajor axis of a,, semiminor axis b, and let the
distance between its geometric center and the center of the
inner circle of radius r, be e,. If we let

$1 =bolag; &y = ag; &3 = eolay; Cy = 5%52(1 - %),
C, = —25%5253§C3 = —f%;x = Rsin ©O;

w = (R cos ©)*; (12)
then (11) can be modified into
w = Cl + sz + C3x2. (13)
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For (13), the normal equation corresponding to (9) will be

m i—1||T
Z WX
2.404
di

=1

m xi+]—2| -1
Zj}m\

=1

ey - (14

3i=1,2.3 i

In (14), mis equal to the number of points chosen to approxi-
mate the locus of (11). If characteristic impedance is desired
for 0<r;/a<0.6, a further approximation can be made, i.c.,
the least Newtonian path length 4, is the distance between
the center of the inner circle and the Ith point on the locus
of (11). With these data it is possible to evaluate C,, C,,
and C; from (14). By substituting these values in (12), the
numerical values of a,, by, and ¢, can be realized. Table I
gives the values of &;, &,, and &; for n=3, 4, 5, and 6. More
accurate values can be obtained by taking the least New-
tonian path length d,; as the difference between the above
value of d; and r. In the above, the problem of determining
the characteristic impedance of a regular polygon-circular
line is reduced to the problem of finding that for a non-
coaxial elliptic-circular line. The latter was the subject
matter of an earlier communication by the author [2] and,
therefore, the derivation obtained therefrom can be directly
utilized for expressing the characteristic impedance Z, of a
polygon-circular coaxial line. Therefore, if z is the ratio of
the diameter of the inscribed circle of the regular ngon to
the diameter of the inner conductor, then

201 _ #2 2,4
cosh'1<—~1 +md = e )cosh_l(m;m * i)
60 2m m*(1 + &)

ZO = 1
2n(1 14+ -—
n( nm)( 22n2>

ohms, (15)

where
m = z"/(1 — {3).

A more useful form for Z, will be the asymptotic formula

(16)

Zy, =601In{(4,z) ohms; z>> 1 (17)

where A4, should be evaluated for each n. From (15) and
(17), we obtain an expression for A4,, viz.,

A,=1/Z

201 __ x2 2.4
cosh™1 1+mii-c3) (1=c3) cosh™! cmiA1
2m m>(1+ &%)
, : . (18)

In (18), it can be observed that as n tends to infinity, 4,
tends to unity, which is as it should be since this case repre-
sents concentric circles. It should be noted that for each n,
A, need not be a constant for all values of z. However, it
was observed that except for n=3, 4, was a constant to
within the third decimal place for n=4, 5, 6 in the range
2<z<4. Table 11 gives the values of 4, for different com-
binations of z and n.

-eXp
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The formula for Z, of (15) was sought to be verified by
comparing it with the results obtained by other methods.
For n=4, a well-known formula [5], which is accurate to
within 1 percent at 50 ohms, is available. The values of Z,,
derived from (15) are compared with that derived from the
preceding known formula. Fig. 2 gives the relative error be-
tween the two formulas for n=4. In Figs. 3, 4, 5, and 6 the
characteristic impedance per unit length as calculated from
(15) is plotted for n=3, 4, 5, and 6, respectively, along with
the characteristic impedance for the inscribed and escribed

circles of the regular polygon.

TABLE I

CONSTANTS FOR THE POLYGON-CIRCLE COXIAL LINE

n &1 ¢ 4
3 0.628 0.696 0.892
4 0.769 0.506 0.935
5 0.861 0.409 0.965
6 0.877 0.331 0.974
TABLE 11
VARIATIONS IN 4,

D/d n=3 n=4 n=>5 n=6
2 1.081 1.058 1.046 1.032
3 1.076 1.058 1.046 1.032
4 1.074 1.058 1.046 1.032

1.002

1.001

Zprevious
Zpresent

[NeTolo]

0.999
0

Fig. 2. Comparison of the results of the present method for

for n=4 with those of an earlier method.
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Characteristic impedance in ohms
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Fig. 3. Characteristic impedance for n=3.
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Fig. 4. Characteristic impedance for n=4.
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Characteristic impedance in ohms

Characteristic impedance in ohms
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Fig. 5.
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Characteristic impedance for n=35.

Fig. 6.

L,

d

Characteristic impedance for n=6.

B. TEM Wave Equation

The previously mentioned derivations, based on the de-
formation procedure in conjunction with the analysis for
the TEM wave of the elliptic-circular structures previously
reported [3], can be extended to derive the TEM wave equa-
tion of the polygon-circle configuration if certain restric-
tions are imposed on the original configuration. It can be
seen from the properties of the conformal transformation
W =Z" that if the polygon has its corners rounded off by a
factor of the diagonal given by (1 — ¥/ a4 + ¢,), then the trans-
formed Riemann sheets become very nearly ellipses so that
the TEM wave equation of the structure can be determined.
It can be shown by modifying the TEM wave equation of the
elliptic-circular line derived earlier, that if E, is the rms
complex electric field strength ; H, is the rms complex mag-
netic field strength; a is a unit vector; v,,,, is the rms voltage
at Z=0; z is the distance along the z axis; u, is the value of u
at the outer boundary ; u, is the value at the inner boundary;
and 7, is the intrinsic impedance; then

a

Erms “ 4a,vrmse‘j’32
_ g (At (19)
a L (-6n/D
rms Ho

In (19), G=Z,/60 is given by (13). If (, 0, z) refers to the
polar coordinate of the original polygon structure, (n ®) is
the remainder when (n0) is divided by = radians, and

_ "+ Rry—r1g

A 7
R

sw=(a; +r9)

1 1
0, = 5, [et = 23aE + ) +(a — 3]
0

A

[ bgeocosn® + agbo{(ad — €3)sin?n® + bicos? n®}*

B [ b§cos?n® + adsin’n® ]

B = eqcosn® + (ad — e3sin’n®)*; R' = (4 — ro)/(B — r,)
N [2a,(A sinn® + wl):l

sinh

“T /D
. _I[Za,(AsinnG))]
v=sin"! ———=}, (20)
VD

then it follows from the foregoing that the expression for D
is given by

D = [A? + wi + 2w,Acosn®]* + a}
~ 2a2[A%cos 2n® + wi + 2w;Acos ©].  (21)

IV. SYNTHESIS OF TRANSMISSION LINES

In actual design problems, it is more useful if the in-
variant transformation can be obtained when the co-
efficients are required to satisfy certain prescribed condi-
tions. For example, if a transmission line structure with a
given characteristic impedance is to be designed with a
prescribed surface area or enclosed volume, some cross
section satisfying the given characteristic impedance may
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be initially designed; and by an invariant transformation
subject to the above constraints, it is possible to find the
optimum cross section satisfying all at the same time. The
problem is one of synthesis because the shape and dimen-
sions of the structure are not known initially, whereas the
electrical and mechanical characteristics or the unique
parameters are given a priori. In what follows, four typical
constraints that may be encountered during synthesis will be
considered.

Case 1. Nonintegral Constraint
To find the form of curve C determined by

Yo = z CPXP;
P=0

(x; < x < xy) (22)

that has the same characteristic impedance with curve A4 as
the structure characterized by the two plates having cross-
sectional equations,

curve A: Y, = > ApxF;

n (23)
curve B: Yz = ) Bpx”; X <X < X,
P=0
but satisfying the constraints
F(C{,Cy---,C,) =0; E=1,2,---,1. (29

Least-weighted-square deformation will be realized for

i X2 n P n N 2 dx
‘MPU * <P§0 Be P;) Crx ) [d(x)]zs]

(25)

(4, being the undetermined multipliers). Differentiation
under integral sign provides (n+ 1) equations that together
with the [ equations of the constraint provide (n+1+1)
equations in (n+ /4 1) unknowns, that, in general, will be
nonlinear simultaneous equations whose solutions could
be obtained to desired accuracy by known methods.

Case 2. Area Constraint

In the above case, if, instead of the general constraints,
only the constraint that the area between curves 4 and C is
different from that between 4 and B by a specified amount
is invoked, then the corresponding constraint will be

(4p — Co)xP dx

(x; — x1)P+1.

P+1 .

X2 n
o= Y

x1 P=0
=2 (Ap—
P=0

The least-weighted square is realized for

Cp) (26)
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ac, PR T
n _ P+1
+16—CP[§ CP)(XZPII; —ano, 27)

which, for any assumed value of the Lagrange’s multiplier
A, will be eliminated to yield (n+ 1) equations in (n+1) un-
knowns from which the values of C, can be determined.

Case 3. Integral Constraint

If the deformation is subject to general integral constraints
and not algebraic as in (24), (25) can be realized in a similar
manner. Here, F, being an integral may require the dif-
ferentiation to be carried out under the integral sign.

Case 4. Degree Reduction Constraint

This is an important constraint because it facilitates a
design automation in view of the simplicity in synthesizing
a class of transmission lines on the digital computer when
this constraint is imposed. In the following, a description
of this class of structures together with a description of the
algorithm is given.

The problem is essentially one of deforming a given struc-
ture for which the characteristic impedance is known into
another for which the characteristic impedance remains un-
altered and that satisfies certain specified electrical and
mechanical properties. It is well known that in Cartesian
coordinates a polynomial or a power series in x for y can
represent a boundary described by a single-valued function,
whereas in polar coordinates such a description is possible
if » is a polynomial or a power series in 6 in the range
0<0<2n. Itis also known that many practical transmission
lines fall within this description. Even if the given function
is involved, the well-known least-square fit can be made to
obtain the corresponding polynomial. Therefore, the prob-
lem is reduced to one of altering the degree and the value of
the coefficients of the given polynomial that satisfies certain
electrical and mechanical specifications and for which
characteristic impedance remains an invariant. Since the
algorithm is essentially the same for both Cartesian and
polar coordinates, in the following, its description is con-
fined to the latter.

Let the initial boundaries be defined by

R = > A0 (outer conductor) (28)
r=0

1) = ) a0 (inner conductor) (29
r=0

where 0<0<2x, and for any 0, R(0)>r(f). It is required to
deform the structure, such that

1} the outer boundary can be described by

m+1

2 A,

where, in general, A, %4, and m<n;

Ry(0) = (30)
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2) the characteristic impedance remains an invariant ;
3) the final structure satisfies some specified mechanical
and electrical properties described by
f;(AllaaA;n+1)=09 l=1”m' (31)
This condition involves m equations in (m+1) un-
knowns that can have several sets of solutions. How-
ever, they can give a unique set of solutions if con-

dition 2) is also considered.

The method consists of three parts. The first step requires
the evaluation of A7, - - -, 4, assuring A,,, ;=0 in (31) and
fits the given boundary to a polynomial of degree n greater
than m in which A7, ---, A;, have this value. Such a curve
fitting can be done easily by the method of least squares
[1]. The second step reduces the degree of the polynomial
R(0) from n to m+1 by the least-weighted-square invari-
ance-deformation method. The reduction is carried out in
(n—m)K discrete steps, where K is the number of reductions
made in the coefficient A4, (successively for r=n, n—1,---,
m+2) in order to make them assume zero values. As an
illustration to the procedure, the first of such reductions
will be described. The outer boundary, after reduction, will

be
(.-

The corresponding normal equations for the invariance
deformation will be

n—1
Y o A0+

= A
R =73 40+ K")eZ. (32)
r=0 r=m+1

-1

2r gitj-2 dgf
T v - av
”AJ’J - 1\[0 [d(@)]zs
2 {R(e)— > 40— (A,,—ﬁ)e"] 6-1do |
L £)"|
J o [d(e)]Zs i
ji=m+1,---,n—1. (33)

A (j=m+1,---,n~1), calculated from (33) are the new
values of A/ (r=m+1,---, n—1), respectively, which should
be substituted into (32), for effecting the next reduction.
Equation (32) will then be
m n—1 A4
R'=Y A0+ Y A0+ (A,, — J)ez. (34)
r=0 r=m+1 2K

The procedure is repeated k times until the coefficient of 6"
becomes zero. Subsequently, (29) is rewritten

m n—2
Ri=Y 40+ Y A0
r=0 r=m+1

A,
+ (A,,_l,z — %)0 (35)
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The procedure is repeated until the degree of the poly-
nomial reduces to (m+ 1). In the third step, the value of the
coefficient of §™* ! so realized is substituted into the first
step. The foregoing procedureis iterated untilall of 47, - - -,
Al ., attain consistent values. This method gives a fast
convergence for deformations that are not very large. An
illustration of the reduction method along with its computer
schematic is given in the Appendix where it is used in the
determination of the universal constant.

Example

The following is a representative example that describes
a synthesis problem. The geometry is chosen arbitrarily in
order to emphasize the generality of the procedure.

A transmission line has been formed with one conductor
having a cross section represented in 3 dimensions by
y=6—2x+x?(0<x<3;0<z< 0),and another conductor,
y;=0(0<x<3;0<z<c0). It is proposed to design another
transmission line having the same characteristic impedance
as the above derived from a new conductor, y,=aq+a;x
+a,x? (0<x<3; 0<z<o0), with the same conductor,
y, =0, subject to the constraint, a4+ 8a; +21.33a,=10 (a
volume constraint). The annulus is assumed to be a perfect
dielectric.

Application of the least-weighted-square invariance-
deformation principle yields

2| aoxi+agxE+a,x; —6xi 4 2 — xitt
zl[ (6—2x;+x7)** k=0
(j=123)
gl = 19 gz = 89 g3 = 21.33.
Here, let (x;—x;_ ) be a constant equal to 0.2. Then, in the
range 0 <x <3, m=15. The above three linear equations to-

gether with the constraint give, on solving them, the co-
efficients a,, a,, and a,. The new conductor, consequently,

- has the description

>

Y2 =5721 — 2.111x + 0.992x* (0 < x < 3;0 < z < ).

V. TRANSMISSION LINES WITH MORE
THAN Two CONDUCTORS

The analysis of structures with more than two boundaries
can be carried out approximately by a principle of super-
position. On being required to deform a structure with
arbitrary boundaries on an all-circle configuration (Fig. 7)
such that the capacitances between the conductors are pre-
served, one must develop methods so as to make C;=Cj
G#k,J #k', jk#kj, j'k'#k'j’), where the concerned capac-
itances are in the presence of the other conductors. Further,
let Cy and Cly. (j#Kk, j #K', jk#kj, jk' #K'j’) be the capac-
itance between the jth and kth or j'th and k’th conductors
in the absence of all other conductors. Superposition, where
admissible, assures that if Cj=C),. is true, then C;=C/,
is true. Since it is the latter that is to be estimated, the former
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Fig. 7. Transformation of boundaries in lines with more than
two conductors.

is only a guide to obtain the all-circle configuration for
which both are true. Under such circumstances, super-
position is a logical assumption in field theory. Thus, by the
least-weighted-square deformation method, the values of
C’ can be determined, which have the same values as Cj,.
in the all-circle structure. If the radii r; (j'=0 to n) and the
distance apart of their centers d;. (j#k', jk'#k'j’) of the
conductors of this structure are left undetermined, more
equations than unknowns result. As there should be unique
solutions, any n of the d;, can be assigned positive values,
and r, can be arbitrarily specified. Thus, from the (n+1),,
equations [6]

2me
r3 + 12 + d?, = 2r,r, cosh (-—— ;
j k ik Tk o (36)
J KK KT

j=0ton k' =0ton,

the remaining values can be solved. [In (36) the sign attached
to d3, is positive or negative depending on whether the con-
ductors j* and k' do not or do enclose each other.] The
dimensions of the circies as well as their orientations thus
being fixed, the capacitances C;, can be calculated by
known methods that in turn are equal to C, for the original
structure.

VI. CONCLUSION

A new principle called *‘least-weighted-square deforma-
tion” for deforming transmission line cross sections in such
a way as to keep some unique parameters of the structure
like the characteristic impedance invariant under such de-
formations was described. The principle was applied to
derive the characteristic impedance, and the TEM wave
equations of transmission lines with a regular polygonal
conductor and the results were compared with those derived
from an earlier method for the case of a square. The syn-
thesis procedure by which the size and shape of the cross
section of a transmission line can be derived for given values
of electrical and mechanical parameters cannot be obtained
easily by earlier methods, for example, those developed by
Black and Higgins [7], whereas they are realized by the
methods developed in this paper. The method has been ex-
tended to boundary value problems in general for calculat-
ing field theoretic parameters and to problems requiring
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arbitrarily high accuracies by introducing a set of universal
constants for each field equation. The details concerning
this, however, are discussed in a separate communication.
It appears that further developments on the synthesis prob-
lem on the lines described may give rise to methods of
synthesis for several other field structures of microwave
engineering.

APPENDIX
A. Justification for the Theorem

The theorem given in Section II implies the provability of
the following three lemmas.

Lemma 1: The least Newtonian path (LNP) length set is
unique for the set of points on the perturbed boundary of a
uniquely described doubly connected, mutually compatible
structure having a unique characteristic impedance.

Lemma 2 : 1t is possible to find a set of weightages for the
boundary points on the perturbed boundary that can trans-
form to another, preserving the invariancy of the char-
acteristic impedance.

Lemma 3: The form of weightage is the same function of
the LNP length for any invariant deformation.

The justification for the above statements are given in the
following analysis.

1) The structure considered has fixed boundaries, is
doubly connected, and is mutually compatible. The last
requirement implies, by definition, that the endpoints of the
LNP trace both the boundaries continuously and entirely.
Also, corresponding to every point on the perturbed
boundary there is a unique LNP. Conversely, given the set
of lengths of the LNP, there corresponds a unique configura-
tion of the structure. Since, for uniquely described bound-
aries, there is a unique characteristic impedance (for TEM),
the first statement results.

2) Since two structures with two inclined plates of
finite breadth and infinite length having the angle sub-
tended between the plates slightly different from one an-
other, can, in general, be adjusted to yield the same capaci-
tance or characteristic impedance, a necessary requisite
would be that the two structures with one plate common,
when superposed, would have the inclined plates intersect-
ing somewhere along the breadth of the lines. Thus, for a
transformation preserving the invariancy, the deformation,
in general, will not be the best fit curve fitted by a least-
square method. This is true for other structures, also. If the
least-square principle is used as a medium of deformation,
in order that the deformation will not be the best fit,
different relative weights at every point of the perturbed
boundary are, in general, necessary to obtain the trans-
formation.

Further, if a weightage is assigned to every point on the
perturbed boundary, then any change of weight at any
point on the perturbed boundary would, in general, affect
the deformation of every other point. This is true because
the least squares are computed only after reckoning the
entire boundary.



502

If deformation of the unperturbed boundary in part or
whole takes place, then, for an invariant deformation, the
weightage, in general, has to change on the perturbed
boundary and conversely. This follows from the fact that
the deformation of the unperturbed boundary changes the
weightage at least at one point on the perturbed boundary,
consequently affecting the least-weighted-square deforma-
tion everywhere on the perturbed boundary, owing to the
previously mentioned property.

We thus obtain the second statement.

3) The last statement can be established as follows.

a) It is possible to obtain the weightages as some func-
tion of the LNP: It is known that the constraints like char-
acteristic impedance or capacitance can be obtained as the
function of the structural dimensions. From Lemma 1, it
follows that an entire set of lengths of LNP can specify a
structure uniquely. The constant parameters may thus be
considered as functions of the LNP set. The invariant trans-
formation thus depends on the nature of weightages. Since
the LNP requires that the constant parameter be kept an
invariant, and since by Lemma 2 such a transformation
exists, it is possible to obtain the weightages as some func-
tion of LNP.

b) The greater the LNP, the less the weightage and
vice versa: This is a consequence of the retarding potential.
It is known that the potential from a charged region de-
creases as the distance from the region increases. Since LNP
is related to distance and the weightage to potential, the
above statement is consequential.

¢) The superficial magnification leaves the character-
istic impedance of the structure an invariant: It is well
known that it is true for the capacitance of structures that if
all dimensions are multiplied by a dimensionless constant,
the capacitance is unaltered. Since the characteristic imped-
ance is inversely proportional to the capacitance, the above
statement follows.

d) The least-square fitting multiplied by the same con-
stant weightage for all points results in the same deforma-
tion as without the multiplication: This is because, giving
equal weight, however large, to each point is the same as
giving no weight at all.

e) Superficial magnification leaves the weightage at
every point on the perturbed boundary linearly increased by
the same proportionality constant: Consequent to step
3 ¢), the invariant transformation of the modified set of
boundaries of the superficially magnified structure by the
modified weightages would be a magnification by a same
amount of the transformed original structure by the original
set of weightage.

f) The function whose weightages are preserved under
an invariant transformation has the general form (1/LNP)’,
where s is a constant: From 3 a), weightage at point i on
the perturbed boundary w; is given by

Wi = [F(di)]_la
where d, is the length of LNP at point i.
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The simplest functions satisfying 3¢) and 3e) are
w; = (kd;)™* and (kd,)).

The latter alternative is not tenable because of 3b). Hence,
from considerations resulting from 3d),

1 s
—d = ——1.
WA [LNP]

B. Evaluation of s

In the foregoing part of this Appendix, a dimensionless
constant s has been introduced. It is the purpose of this sec-
tion to evaluate this constant numerically for structures
governed by the TEM wave, such as transmission lines,
when the field theoretic parameter under consideration is
the characteristic impedance or the capacitance.

The constant s is evaluated by noting that since the
analysis holds good for double-connected power-series-
describable mutually compatible structures in general, cer-
tain well-known configurations, which have been analyzed
previously, can also fit into the category. Thus, two struc-
tures, differing by a small amount in one of the boundaries,
may be chosen, whose analysis is available in published
literature. In the Cartesian coordinates inclined planes and
parallel planes may be considered, while in the polar co-
ordinates eccentric and concentric cylinders may be chosen.
In the following, the method is illustrated in terms of the
latter. A transmission line with a cylindrical inner con-
ductor of radius R; and a cylindrical outer conductor of
radius R,, whose axes are separated by a distance D, is
considered. It is assumed that R,=D=1 and R,=15. The
outer conductor is described as a power series in § by em-
ploying the least-square fit. For example, to the third degree,
it is given by

r = 16.08 — 1.0596 + 0.11976* + 0.00820°;
0 < 6 < 2n).

It is assumed that the origin is situated at the center of
the inner conductor. The degree-reduction method is em-
ployed for reducing the above polynomial to the final form

r=c,

representing the coaxial transmission lines. The flow
schematic shown in Fig. 8 has been included to illustrate
the manner in which a degree reduction governed by the
invariance-deformation principle can be computerized. The
final result sought from the computer being s, it is varied
from two downwards and the value at which F; and F,
given by

R? + R§ — D? C
= Y L —— 0 . F = 1 -
F1 COSh ( 2RiR0 ] 2 n Ri

are equal to a specified tolerance, is taken as the required
value. A computation performed on the above structure
gave a value of 1.251 for s. It should be mentioned that the
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Fig. 8. Flow schematic for the degree-
reduction method. Initial values: «, ¢,
a, R\, Ry 5, A, for j=1to N;1)j=N:
Ay=Ay: 2) ses—a; 3) A=A
—Aj/10; 4) A from equation similar
to (33); 5) A,=4; for k=1, 2, -,
Jj—1; 6) Decision: 4,=0?; 7) jej—1;
8) A7=A; 9) Decision; j<2?: 10)
Decision: (F,—F;) changes sign?;
11) o<>0,/10; 12) Decision: a < g?

representation of the weightage by only one universal con-
stant is an approximation. In general, the weightage will be

()l )
S\Gap) T \s ) A E) T

where d;; is the set of Newtonian path lengths and s, s,,
§,, * * *, are a set of universal constants.

ACKNOWLEDGMENT

The author is grateful to Prof. S. V. C. Aiya, Prof.
H. E. M. Barlow, Prof. R. Narasimhan, and Prof. D. Y.
Phadke for their interest in this project. D. Sadanandan
and V. A. Durandhar are thanked for their assistance in
programming the problem on the computer. Miss S. D.
Kale is thanked for her assistance in the preparation of the
manuscript.

REFERENCES

[1] 1. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and
Modern Engineering. New York: McGraw-Hill, 1958, pp. 702-711.
264-270.

[2] N. Seshagiri, A nonuniform coaxial line with an isoperimetric sheath
deformation,” JEEE Trans. Microwave Theory and Techniques, vol.
MTT-11, pp. 478-486, November 1963.

[3] N. Seshagiri, “A uniform coaxial line with an elliptic-circular cross
section,” JEEE Trans. Microwave Theory and Techniques (Correspon-
dence), vol. MTT-11, pp. 549-551, November 1963.

[4] R. V. Churchill, Complex Variables and Application. New York:
McGraw-Hill, 1960, pp. 67-68.

[5] H. P. Westman, Ed., Reference Data for Radio Engineers. New York:
International Telephone and Telegraph Corp., 1956, p. 590.

[6] R. W. P. King, Transmission Line Theory. New York: McGraw-Hill,
1957, p. 43.

[7]1 K. G. Black and T. J. Higgins, “Rigorous determination of the
parameters of mucrostrip transmission hines,” IRE Trans. Microwave
Theory and Techniques, vol. MTT-3, pp. 93-113, March 1955. (See
also other papers in this special issue on *“Striplines.””)




