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A bstmct-Arralysis and synthesis of transmission lines of arbitrary

geometry are not easy to realize with currently available methods. The object

of this paper is to show that by introducing a new principle to be called the
~~lea5t.w~ighted.s~uare invariance deformation,” it k possible tO SOh’(3 tSMr.s-

mission line problems to desired orders of accuracy. A procedure based on this

principle is given for deforming a given transmission line geometry keeping

the characteristic impedance an invariant, or for syntbesiziog a transmission

line cros%sectional geometry corresponding to the given constant parameters

of the structure. The method is applied to the analysis of transmission lines

having a regular polygonal outer conductor and a circrdar inner conductor.

An application to a representative situation in synthesis is also described.

I. INTRODUCTION

T

HOUGH TRANSMISSION lines have been analyzed

exactly for a few simple geometries, there appears to

be no general procedure for obtaining explicit analyti-

cal expressions for parameters like the characteristic im-

pedance when the geometry is arbitrary and involves many

conductors. The synthesis problem, that of designing a

suitable cross-sectional geometry for the simultaneous

specification of the values of certain electrical and mechani-

cal parameters, has not been investigated so far. The object

of this paper is to describe a method based on a new prin-

ciple to be called “least-weighted-square invariance de-

formation” and to apply it to problems in both analysis and

synthesis. Though the parameter considered throughout the

paper is the characteristic impedance, the principle itself is

of wider applicability.

The subject matter of the paper is treated in the follow-

ing order. The least-weighted-square deformation principle

is first described, showing how a structure can be deformed

from one shape to another without changing the character-

istic impedance per unit length or any other unique parame-

ter of the structure. This method is applied to the analysis of

a transmission line with a circular inner conductor, and a
regular polygonal outer conductor, and expressions for the

characteristic impedance and the TEM wave are derived.

Section IV gives a description of the synthesis problem from

the field theoretic viewpoint as encountered in transmission

line theory. Methods are given for designing transmission

line geometry for the specified electrical and mechanical

requirements. In the last section, an extension of the methods

of the previous section to transmission lines with more than
two conductors is discussed. In the Appendix, a justifica-

tion for the theorem utilized in the main body of the paper is

given, together with the description of a method for evalua-
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ting certain universal constants associated with transmission

lines.

II. LEAST-WEIGHTED-SQUARE DEFORMATION PRINCIPLE

It may be required, sometimes, to analyze an electro-

magnetic structure whose boundary configuration is very

nearly that of one which has been anaiyzed previously.

Situations may also arise wherein a structure to be analyzed,

on being conformably transformed by known analytic func-

tions, may come close to a known analyzed structure. In

such cases, it is possible to find the dimensions of the

analyzed structure that has the same characteristic imped-

ance as the given structure, which has not been analyzed

before, by using the methods based on the principle of least-

weighted-square deformation explained below.

Description in the present section is confined to the case

of determining the characteristic impedance of two, long,

open plates and of TEM structures with a circular inner

conductor and an outer conductor of arbitrary shape

capable of being described by a power series. It should be

noted that when both conductors are of arbitrary geometry,

the following method is still useful, though it may be re-

quired to deform each conductor one after the other.

In Fig. l(a) or (b), curve AO is the boundary which remains

unchanged during the transformation; curve A ~ is the

boundary to be deformed; and curve A2 is the deformed

form of curve Al such that the characteristic impedance

between Al and AO is the same as that between AZ and AO. If
Aoj and Al j are known constants, and A2j are undetermined

coefficients, then the three functions describing A ~, A2, A3

are, in Cartesian coordinates (x, y),
t

~i = ~ Aij~j-l ;
j=l (x~rl < x < x~t,; i = O, 1, 2), (1)

or in polar coordinates (r, 0),

t
r, = ~ Aijej–l ; (OA,I <6< eALz; i’ = o, 1, 2). (2)

,=1

By representing A2J as explicit functions of not more than

tparametric variables, retaining at least a single degree of

freedom, it is possible to choose the particular form of the

perturbed boundary though not the actual dimensions.
Thus, for a maximum of tdegrees of freedom, the parametric

form of the coefficients will be

A2j = fj(tl, <2>, “ “ “> ~t); j=l,2,..., t. (3)

The deformation of curve A2 to curve A3, in such a way

as to keep the characteristic impedance an invariant under
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Fig. 1. Transformation of boundaries in transmission lines
with two conductors.

such a deformation, is described in two steps. A theorem

for the existence of a weighting function governing the least-

weighted-square principle is stated first. This is followed by

the derivation of explicit expressions for the undetermined

coefficients Azj, together with a method for evaluating ~~,

L2, ”””><,.

The theorem requires the definition of the following five

terms.

Definition 1

The least Newtonian path length is the shortest distance

between two given points, one on each of two boundary

curves, such that the entire path is within the annular region.

Definition 2

Two boundaries are mutually compatible if the endpoints

of the least Newtonian path trace both the boundaries

continuously and entirely.

Definition 3

A structure-parameter set of an n-dimensional structure is

a set of n independent parameters which determines the

size, shape, and dimensions of the structure uniquely.

Definition 4

A superficial magnification is defined to be possible if the

structure parameters remain invariant under any pro-

portionate change in the dimensions of the entire structure.

Definition 5

Weighting function of the least Newtonian path length is

a function deciding the relative deformations of various

sections of a curve representing a boundary that is being

deformed by the least-square criteria [1].

Theorem

A deformation of one of the boundaries of a transmission

line, keeping the other boundaries unperturbed, leaves the

structure parameters that maintain invariance under a

superficial magnification, invariant under the deformation
if the sum of weighted squares of ordinate (or radius vector)

deviations, represented by

J[( )1
z

w= ‘2 j~lA2jXJ-’ - ~ A3jxj-’ L
F[d(x)]

dx (4)

xl
,=1

(in Cartesian coordinates)

or

J[( )1
2

w= ~“ j~l A2j0j-1 - ~ A3jOj-’ L
F[d(6)]

d(3, (5)
j=l

(in polar coordinates)

is a minimum, where F [d(x)] or F [d(O)], which is a weighting

function of the least Newtonian path length d(x) or d(~)

corresponding to any x or 0, respectively, exists for mutually

compatible, power series describable boundaries.

A justification for this theorem is given in the Appendix.

It is shown there that

1) there exists a set of universal dimensionless constants

defining the weightages F [d(x)] or F[d(0)];

2) for structures governed by Laplace’s equation or for

those in the TEM mode, a weighting function is given

by

F[d(x)] = [l/d(x)]s or F[d(0)] = [l/d(0)]s, (6)

wheres is a universal constant (i.e., independent of the

shape, size, or dimensions of the structure) and given

by

s = 1.202 (Cartesian)

= 1.251 (polar).

It was observed in the above theorem that(4) or (5) should

be a minimum. This is true if, on substituting (3) into (4)

or (5),

(3w/&.g~ = o ; k=l,2, ””, t.

Since Cj are explicit functions of <~, this condition is equiv-

alent to

a wfacj = o; j=l,2, ”””, t (7)

subjected to the conditions of (3). Consequently, <~ can be

evaluated. By a well-known procedure attributed to Gauss

(see Sokolnikoff and Redheffer [1]) the modified (weighted)

normal equations can be derived from (6), (7), and (4) or (5).

The normal equations in Cartesian coordinates, using

matrix notations, are

IJ
1 x,xi+j-z dx -1

1J‘2 y~x ‘-1 dx T

[d(x)]2s ~ j,i=l,z,,t ~, [d(x)]2s i“

(8)
.X1

Equation (8) can be written in the “limit of a sum” form as

Ilc.ill;=

where yll is equal to the value of yl at xl, and, similarly, in

polar coordinates as

where rll is equal to the value of rl at 131.
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In the next section, the preceding method is applied to the

analysis of a transmission line with circular inner con-

ductor and a regular polygonal outer conductor, and the

results are verified by comparing them with those obtained

by other methods.

III. APPLICATION TO THE ANALYSIS OF POLYGON-CIRCULAR

TRANSMISSION LINES

In this section, it is intended to show that the least-

weighted-square deformation can be applied in conjunc-

tion with known conformal transformations to arrive at the

characteristic impedance or the TEM wave equation ex-

plicitly in terms of the physical dimensions of the trans-

mission line. As an example, a transmission line with a

circular inner conductor, a regular polygonal outer con-

ductor, and a perfect dielectric annulus is taken. For this

family of transmission lines an explicit relation for the char-

acteristic impedance is available only for the square-circle

configuration, whereas the TEM wave equation has not

been derived for any member of this family. It should be

noted in the following derivations that among the regular

ngons considered, n = 2 does not correspond to parallel

planes but to an ellipse having finite major diameter. This

structure has been analyzed by the author in previous com-

munications [2], [3]. Therefore, in what follows, only those

structures with n = 3 to co are considered. The first part is

confined to the derivation of the characteristic impedance

of this family, and in the second part the TEM equations are

derived.

A. Characteristic Impedance

A conformal transformation W= 2“ maps the ngon of side

2a and an inner conductor of radius Vi onto n identical

Riemann sheets [4], each sheet having a circular inner

boundary of radius rf and an outer boundary described in

polar form (R, @) by

For (13), the normal equation corresponding to (9) will be

i+]–2 –1

Ilcjllf= ,j, * I,.,=,2.31$1s:“ ’14)
In (14), m is equal to the number of points chosen to approxi-

mate the locus of (1 1). If characteristic impedance is desired

for O< ri/a <0.6, a further approximation can be made, i.e.,

the least Newtonian path length dl is the distance between

the center of the inner circle and the lth point on the locus

of (11). With these data it is possible to evaluate Cl, C2,

and C3 from (14). By substituting these values in (12), the

numerical values of ao, bo, and eO can be realized. Table I

gives the values of <1, <2, and C3 for n= 3,4, 5, and 6. More

accurate values can be obtained by taking the least New-

tonian path length dl as the difference between the above

value of dl and r. In the above, the problem of determining

the characteristic impedance of a regular polygon-circular

line is reduced to the problem of finding that for a non-

coaxial elliptic-circular line. The latter was the subject

matter of an earlier communication by the author [2] and,

therefore, the derivation obtained therefrom can be directly

utilized for expressing the characteristic impedance 2’0 of a

polygon-circular coaxial line. Therefore, if z is the ratio of

the diameter of the inscribed circle of the regular ngon to

the diameter of the inner conductor, then

cosh– 1

ZO = 60 ( l+m::-’’))cOsl[:~::L)L)

()

1
2n(lnm) 1 + —

2zn2

ohms, (15)

where

m = zn/(l – <,). (16)

A more useful form for ZO will be the asymptotic formula

( )“
ZO = 60 In (Anz) ohms; Z>>l (17)

Z—@
I?(a, n, 0) = a“ cotn (rc/n) see” —

n’ where xl. should be evaluated for each n. From (15) and

@ = O to 2n radians. (l ~, (17), we obtain an expression for A., viz.,

Each of the n sheets can be deformed, using the least-

weighted-square principle, into an elliptic outer conductor

and a noncoaxial circular inner conductor. Let this ellipse
have a semimajor axis of ao, semiminor axis bO, and let the

distance between its geometric center and the center of the

inner circle of radius r. be eO. If we let

tI = ~o/ao; t2 = a.; t, = eo/aO; Cl = t~t,(l – C;);

C2= –21~~J3;C3= –&; x= Rsin@;

w = (R Cos @)2; (12)

then (11) can be modified into

w = c1 + C2X + C3X2. (13)

A- = IIZ,. ,

[

cosh – 1

exp (

1

l+m::-’’)cOs(:~ r:i))i)) . (,,)

()
2n(lnm) 1 + &

In (18), it can be observed that as n tends to infinity, A.

tends to unity, which is as it should be since thi$ case repre-

sents concentric circles. It should be noted that for each n,

An need not be a constant for all values of z. However, it

was observed that except for n =3, A. was a constant to

within the third decimal place for n= 4, 5, 6 in the range

2 <z <4. Table 11 gives the values of A. for different com-

binations of z and n.
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The formula for 20 of(15) was sought to be verified by

comparing it with the results obtained by other methods.

For n= 4, a well-known formula [5], which is accurate to

within 1 percent at 50 ohms, is available. The values of 20

derived from (15) are compared with that derived from the

preceding known formula. Fig. 2 gives the relative error be-

tween the two formulas for n= 4. In Figs. 3, 4, 5, and 6 the

characteristic impedance per unit length as calculated from

(15) is plotted for n = 3,4,5, and 6, respectively, along with

the characteristic impedance for the inscribed and escribed

circles of the regular polygon.

TABLE I

CONSTANTSFORTHE POLYGON-CIRCLECOXIAL LINE

n t, c, P

3 0.628 0.696 0.892

4 0.769 0.506 0.935
5 0.861 0.409 0.965
6 0.877 0.331 0.974

TABLE II

VARIATIONSIN A.

D/d ~=3 ~=4 n=s n=b

2 1.081 1.058 1.046 1.032

3 1.076 1.058 1.046 1.032
4 1.074 1.058 1.046 1.032

o’m~
0.25 0.30 0.35 0.40 0.45 0.

d—-9

0

Fig. 2. Comparison of the results of the present method for
for n= 4 with those of an earlier method.
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Fig. 3. Characteristic impedance for n = 3.
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Fig. 5. Characteristic impedance for n = 5.

I

Fig. 6. Characteristic impedance for n = 6.

B. TEM Wave Equation

The previously mentioned derivations, based on the de-

formation procedure in conjunction with the analysis for

the TEM wave of the elliptic-circular structures previously

reported [3], can be extended to derive the TEM wave equa-

tion of the polygon-circle configuration if certain restric-

tions are imposed on the original configuration. It can be

seen from the properties of the conformal transformation

W= .27 that if the polygon has its corners rounded off by a

factor of the diagonal given by (1 – J’-), then the trans-

formed Riemann sheets become very nearly ellipses so that

the TEM wave equation of the structure can be determined.

It can be shown by modifying the TEM wave equation of the

elliptic-circular line derived earlier, that if E,m, is the rms

complex electric field strength; E&, is therms complex mag-

netic field strength; a is a unit vector; v,~~ is the rms voltage

at Z = O; z is the distance along the z axis; u ~is the value of u

at the outer boundary; U2 is the value at the inner boundary;

and qO is the intrinsic impedance; then

{ I--HE
au

rms 4a,v,~,e ‘jDz
— (19)

H
; (-G)@ “

rms

In (19), G= ZO/60 is given by (15). If (q, 0, z) refers to the

polar coordinate of the original polygon structure, (n Cl) is

the remainder when (n8) is divided by n radians, and

A=

a, =

A=

B=

u=

v=

then

II” + R’rO – rO
; w = (a: + r~)+

R’

& [eg - 2eiXag + r;) +(a~ - r~)’]+

[

b~eo cos n@ + aobO{(a~ – e:) sinz n@ + b; COS2n@}*

b; COS2n@ + at sinz n@ 1
e. cos n@ + (a; – e; sinz n~)~; R’ = (A – ro)/(B – ro)

[ 12aJA sin no + WI)
sinh – 1

Sin-’P;;f!
(20)

itfollows from the foregoing that the expression for D

is given by

D = [Az + w; + 2WIA cos n@]2 + a$

— 2a~[A2 cos 2n@ + W; + 2WIA cos @]. (21)

IV. SYNTHESIS OF TRANSMISSION LINES

In actual design problems, it is more useful if the in-

variant transformation can be obtained when the co-

efficients are required to satisfy certain prescribed condi-

tions. For example, if a transmission line structure with a

given characteristic impedance is to be designed with a

prescribed surface area or enclosed volume, some cross

section satisfying the given characteristic impedance may
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be initially designed; and by an invariant transformation

subject to the above constraints, it is possible to find the

optimum cross section satisfying all at the same time. The

problem is one of synthesis because the shape and dimen-

sions of the structure are not known initially, whereas the

electrical and mechanical characteristics or the unique

parameters are given a priori. In what follows, four typical

constraints that may be encountered during synthesis will be

considered.

Case 1. Nonintegral Constraint

To find the form of curve C determined by

Yc = ~ Cpxp ; (x, < x s XJ (22)
p=o

that has the same characteristic impedance with curve A as

the structure characterized by the two plates having cross-

sectional equations,

n

curve A: Y~ = ~ APXP; X15X5X2
P=o

(23)

curve B: Y~ = ~ Bpxp ; xi < x < .x-~,
P=o

but satisfying the constraints

Fk(c~, c~, “ “, c.) = 0; li=l,2,’”” ,1. (24)

Least-weighted-square deformation will be realized for

8-u( )1‘2 ~ Bpxp - ~ Cpx’ 2&
aAp ~, p=() p=o

1 aFk
+ ~ A-

~=, ~AP=O
(25)

(1~ being the undetermined multipliers). Differentiation

under integral sign provides (n+ 1) equations that together

with the 1 equations of the constraint provide (n+ 1+ 1)

equations in (n+ 1+ 1) unknowns, that, in general, will be

nonlinear simultaneous equations whose solutions could

be obtained to desired accuracy by known methods.

Case 2. Area Constraint

In the above case, if, instead of the general constraints,

only the constraint that the area between curves A and C is

different from that between A and B by a specified amount

is invoked, then the corresponding constraint will be

a-[J{ }‘2Pjo(Bp - cp)xp 2+
acp ., [d(x)]”

+2
[

& p~o(Ap - Cp) ‘X2 - ‘l)p+’ _ ~
P+l 1=(),(27)

which, for any assumed value of the Lagrange’s multiplier

1, will be eliminated to yield (n+ 1) equations in (n + 1) un-

knowns from which the values of Cp can be determined.

Case 3. Integral Constraint

If the deformation is subject to general integral constraints

and not algebraic as in (24), (25) can be realized in a similar

manner. Here, F~ being an integral may require the dif-

ferentiation to be carried out under the integral sign.

Case 4. Degree Reduction Constraint

This is an important constraint because it facilitates a

design automation in view of the simplicity in synthesizing

a class of transmission lines on the digital computer when

this constraint is imposed. In the following, a description

of this class of structures together with a description of the

algorithm is given.

The problem is essentially one of deforming a given struc-

ture for which the characteristic impedance is known into

another for which the characteristic impedance remains un-

altered and that satisfies certain specified electrical and

mechanical properties. It is well known that in Cartesian

coordinates a polynomial or a power series in x for y can

represent a boundary described by a single-valued function,

whereas in polar coordinates such a description is possible

if r is a polynomial or a power series in O in the range

Os 6< 27c.It is also known that many practical transmission

lines fall within this description. Even if the given function

is involved, the well-known least-square fit can be made to

obtain the corresponding polynomial. Therefore, the prob-

lem is reduced to one of altering the degree and the value of

the coefficients of the given polynomial that satisfies certain

electrical and mechanical specifications and for which

characteristic impedance remains an invariant. Since the

algorithm is essentially the same for both Cartesian and

polar coordinates, in the following, its description is con-

fined to the latter.

Let the initial boundaries be defined by

R(O) = ~ A,O’ (outer conductor) (28)
~=o

r(6) = jj a.~ (inner conductor) (29)
~=o

where 0< 6s 27c,and for any O, R(6)> r(e). It is required to

deform the structure, such that

1) the outer boundary can be described by

f?l+l

R}(f)) = ~ AJY,
~=o

(30)

The least-weighted square is realized for where, in general, A.f, # A, and m <n;
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2) the characteristic impedance remains an invariant;

3) the final structure satisfies some specified mechanical

and electrical properties described by

“w’l,”””,4+J=o; i=l, ”””, m (31)

This condition involves m equations in (m+ 1) un-

knowns that can have several sets of solutions. How-

ever, they can give a unique set of solutions if con-

dition 2) is also considered.

The method consists of three parts. The first step requires

the evaluation of A;, “” “, A: assuring AL+ ~= O in (31) and

fits the given boundary to a polynomial of degree n greater

than m in which A;,”” “ , AL have this value. Such a curve

fitting can be done easily by the method of least squares

[1]. The second step reduces the degree of the polynomial

R(6) from n to m+ 1 by the least-weighted-square invari-

ance-deformation method. The reduction is carried out in

(n – m)K discrete steps, where K is the number of reductions

made in the coefficient A, (successively for r = n, n – 1,”” “,

m+ 2) in order to make them assume zero values. As an

illustration to the procedure, the first of such reductions

will be described. The outer boundary, after reduction, will

be

The corresponding normal equations for the invariance

deformation will be

J
2z i+j–2e ~~ i -1

11411:= o [d(0)]zsI

j,i=m+l, ”””, n–1. (33)

A; (j=m+ l,”, n — 1), calculated from (33) are the new

values of Aj(r=m+ l,”””, n – 1), respectively, which should

be substituted into (32), for effecting the next reduction.

Equation (32) will then be

The procedure is repeated k times until the coefficient of 0“

becomes zero. Subsequently, (29) is rewritten

( )A~_1,2
+ A.-l,z – — e“.

K
(35)

The procedure is repeated until the degree of the poly-

nomial reduces to (m+ 1). In the third step, the value of the

coefficient of tlm+ 1 so realized is substituted into the first

step. The foregoing procedure is iterated until all of A \, “ “ “ ,

AL+ 1 attain consistent values. This method gives a fast
convergence for deformations that are not very large. An

illustration of the reduction method along with its computer

schematic is given in the Appendix where it is used in the

determination of the universal constant.

Example

The following is a representative example that describes

a synthesis problem. The geometry is chosen arbitrarily in

order to emphasize the generality of the procedure.

A transmission line has been formed with one conductor

having a cross section represented in 3 dimensions by

y= 6– 2X+X2 (O<x < 3; 0< z< co), and another conductor,

Y1 = O(0 S x < 3; Os z< ~). It is proposed to design another
transmission line having the same characteristic impedance

as the above derived from a new conductor, Y2 = ao + alx

+ a2x2 (O< x <3; Os z < co), with the same conductor,

yl = O, subject to the constraint, a.+ Sal+ 21.33a2 = 10 (a

volume constraint). The annulus is assumed to be a perfect

dielectric.

Application of the least-weighted-square invariance-

deformation principle yields

mX[aoxi+alx~+ a2x~—6x{– 1+2x{ —x{+l

(6 – 2x,+ X;)2S 1+,gjA=O;
,=1

(j= 1,2, 3)

91 = 1, gz = 8, gs = 21.33.

Here, let (xi – xi_ ~) be a constant equal to 0.2. Then, in the

range O< x <3, m= 15. The above three linear equations to-

gether with the constraint give, on solving them, the co-

efficients ao, al, and az. The new conductor, consequently,

has the description

.Y2 = 5.721 – 2.111x + 0.992x2@< X s 3;0< Z< m).

V. TRANSMISSION LINES WITH MORE

THAN Two CONDUCTORS

The analysis of structures with more than two boundaries

can be carried out approximately by a principle of super-
position. On being required to deform a structure with

arbitrary boundaries on an all-circle configuration (Fig. 7)

such that the capacitances between the conductors are pre-

served, one must develop methods so as to make CJ~= C,jt~,

(j+ k, j’ #k’, jk # kj, j’k’ # k’j’), where the concerned capac-
itances are in the presence of the other conductors. Further,

let Cj~ and C~,~,(j # k, j’ # k, jk # kj, j’k # k’j’) be the capac-

itance between the jth and kth or j’th and k’th conductors

in the absence of all other conductors. Superposition, where

admissible, assures that if C~~= C~t~t is true, then Cj~ = C~t~t

is true. Since it is the latter that is to be estimated, the former
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Fig. 7. Transformation of boundaries in lines with more than
two conductors.

is only a guide to obtain the all-circle configuration for

which both are true. Under such circumstances, super-

position is a logical assumption in field theory. Thus, by the

least-weighted-square deformation method, the values of

Cj~ can be determined, which have the same values as Cj~

in the all-circle structure. If the radii r] (j’= O to n) and the

distance apart of their centers dj~, (j’ # k’, j’k # k’j’) of the

conductors of this structure are left undetermined, more

equations than unknowns result. As there should be unique

solutions, any n of the dl~, can be assigned positive values,

and r. can be arbitrarily specified. Thus, from the (n+ 1),,

equations [6]

()2n&
r~, + rf, f d~,~ = 2rjtr~! cosh —

Cj!k! ; (36)

j’ # k, j’k’ # k~

j’=oton, k’=otoiz,

the remaining values can be solved. [In (36) the sign attached

to d~~ is positive or negative depending on whether the con-

ductors j’ and k’ do not or do enclose each other.] The

dimensions of the circles as well as their orientations thus

being fixed, the capacitances Cj~ can be calculated by

known methods that in turn are equal to Cj~ for the original

structure.

VI. CONCLUSION

A new principle called “least-weighted-square deforma-

tion” for deforming transmission line cross sections in such

a way as to keep some unique parameters of the structure

like the characteristic impedance invariant under such de-

formations was described. The principle was applied to

derive the characteristic impedance, and the TEM wave

equations of transmission lines with a regular polygonal

conductor and the results were compared with those derived

from an earlier method for the case of a square. The syn-

thesis procedure by which the size and shape of the cross

section of a transmission line can be derived forgiven values

of electrical and mechanical parameters cannot be obtained

easily by earlier methods, for example, those developed by

Black and Higgins [7], whereas they are realized by the

methods developed in this paper. The method has been ex-

tended to boundary value problems in general for calculat-

ing field theoretic parameters and to problems requiring

arbitrarily high accuracies by introducing a set of universal

constants for each field equation. The details concerning

this, however, are discussed in a separate communication.

It appears that further developments on the synthesis prob-

lem on the lines described may give rise to methods of

synthesis for several other field structures of microwave

engineering.

APPENDIX

A. Justification for the Z%eorem

The theorem given in Section 11implies the provability of

the following three lemmas.

Lemma 1: The least Newtonian path (LNP) length set is

unique for the set of points on the perturbed boundary of a

uniquely described doubly connected, mutually compatible

structure having a unique characteristic impedance.

Lemma 2: It is possible to find a set of weightages for the

boundary points on the perturbed boundary that can trans-

form to another, preserving the invariance of the char-

acteristic impedance.

Lemma 3: The form of weightage is the same function of

the LNP length for any invariant deformation.

The justification for the above statements are given in the

following analysis.

1) The structure considered has fixed boundaries, is

doubly connected, and is mutually compatible. The last

requirement implies, by definition, that the endpoints of the

LNP trace both the boundaries continuously and entirely.

Also, corresponding to every point on the perturbed

boundary there is a unique LNP. Conversely, given the set

of lengths of the LNP, there corresponds a unique configura-

tion of the structure. Since, for uniquely described bound-

aries, there is a unique characteristic impedance (for TEM),

the first statement results.

2) Since two structures with two inclined plates of

finite breadth and infinite length having the angle sub-

tended between the plates slightly different from one an-

other, can, in general, be adjusted to yield the same capaci-

tance or characteristic impedance, a necessary requisite

would be that the two structures with one plate common,

when superposed, would have the inclined plates intersect-

ing somewhere along the breadth of the lines. Thus, for a

transformation preserving the invariance, the deformation,

in general, will not be the best fit curve fitted by a least-

square method. This is true for other structures, also. If the

least-square principle is used as a medium of deformation,

in order that the deformation will not be the best fit,

different relative weights at every point of the perturbed

boundary are, in general, necessary to obtain the trans-

formation.

Further, if a weightage is assigned to every point on the

perturbed boundary, then any change of weight at any

point on the perturbed boundary would, in general, affect

the deformation of every other point. This is true because

the least squares are computed only after reckoning the

entire boundary.
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If deformation of the unperturbed boundary in part or

whole takes place, then, for an invariant deformation, the

weightage, in general, has to change on the perturbed

boundary and conversely. This follows from the fact that

the deformation of the unperturbed boundary changes the

weightage at least at one point on the perturbed boundary,

consequently affecting the least-weighted-square deforma-

tion everywhere on the perturbed boundary, owing to the
previously mentioned property.

We thus obtain the second statement.

3) The last statement can be established as follows.

a) It is possible to obtain the weightages as some func-

tion of the LNP: It is known that the constraints like char-

acteristic impedance or capacitance can be obtained as the

function of the structural dimensions. From Lemma 1, it

follows that an entire set of lengths of LNP can specify a

structure uniquely. The constant parameters may thus be

considered as functions of the LNP set. The invariant trans-

formation thus depends on the nature of weightages. Since

the LNP requires that the constant parameter be kept an

invariant, and since by Lemma 2 such a transformation

exists, it is possible to obtain the weightages as some func-

tion of LNP.

b) The greater the LNP, the less the weightage and

vice versa: This is a consequence of the retarding potential.

It is known that the potential from a charged region de-

creases as the distance from the region increases. Since LNP

is related to distance and the weightage to potential, the

above statement is consequential.

c) The superficial magnification leaves the character-

istic impedance of the structure an invariant: It is well

known that it is true for the capacitance of structures that if

all dimensions are multiplied by a dimensionless constant,

the capacitance is unaltered. Since the characteristic imped-

ance is inversely proportional to the capacitance, the above

statement follows.

d) The least-square fitting multiplied by the same con-

stant weightage for all points results in the same deforma-

tion as without the multiplication: This is because, giving

equal weight, however large, to each point is the same as

giving no weight at all.

e) Superficial magnification leaves the weightage at

every point on the perturbed boundary linearly increased by

the same proportionality constant: Consequent to step
3 c), the invariant transformation of the modified set of

boundaries of the superficially magnified structure by the

modified weightages would be a magnification by a same

amount of the transformed original structure by the original

set of weightage.
O The function whose weightages are preserved under

an invariant transformation has the general form (1/LNP~,

where s is a constant: From 3 a), weightage at point i on

the perturbed boundary Wi is given by

Wi = [F(di)] -1,

where d, is the length of LNP at point i.

The simplest functions satisfying 3c) and 3e) are

Wi = (kdi) -s and (kdi~.

The latter alternative is not tenable because of 3b). Hence,

from considerations resulting from 3d),

[1
s

w, = d,–s = ~
LNP “

B. Evaluation ofs

In the foregoing part of this Appendix, a dimensionless

constants has been introduced. It is the purpose of this sec-

tion to evaluate this constant numerically for structures

governed by the TEM wave, such as transmission lines,

when the field theoretic parameter under consideration is

the characteristic impedance or the capacitance.

The constant s is evaluated by noting that since the

analysis holds good for double-connected power-series-

describable mutually compatible structures in general, cer-

tain well-known configurations, which have been analyzed

previously, can also fit into the category. Thus, two struc-

tures, differing by a small amount in one of the boundaries,

may be chosen, whose analysis is available in published

literature. In the Cartesian coordinates inclined planes and

parallel planes may be considered, while in the polar co-

ordinates eccentric and concentric cylinders may be chosen.

In the following, the method is illustrated in terms of the

latter. A transmission line with a cylindrical inner con-

ductor of radius Ri and a cylindrical outer conductor of

radius RO, whose axes are separated by a distance D, is

considered. It is assumed that R,= D = 1 and RO= 15. The

outer conductor is described as a power series in 0 by em-

ploying the least-square fit. For example, to the third degree,

it is given by

r = 16.08 – 1.0590 + 0.119702 + 0.008263;

(o <9< 2n).

It is assumed that the origin is situated at the center of

the inner conductor. The degree-reduction method is em-

ployed for reducing the above polynomial to the final form

r=c,

representing the coaxial transmission lines. The flow

schematic shown in Fig. 8 has been included to illustrate

the manner in which a degree reduction governed by the

invariance-deformation principle can be computerized. The

final result sought from the computer being s, it is varied

from two downwards and the value at which F1 and Fz

given by

F1 = cosh -1
“:XD2); ‘,= ’n(:)(

are equal to a specified tolerance, is taken as the required

value. A computation performed on the above structure

gave a value of 1.251 for s. It should be mentioned that the
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Fig. 8. Flow schematic for the degree-
reduction method. Initial values: u, L
a, R1, R2, s, A, forj=l to N; l)j=iV:
A;= .4N; 2) Ses – u ; 3) A,+/tJ
– A;/10; 4) .4; from equation similar
to (33); 5) Ak=A~ for k=l, 2, . . .
~–l ; 6) Decision: AJ=O?; 7) j-j–l ;
8) ~{= A,; 9) Decision; j< 2?: 10)
Declslon: (Fz – Fl) changes sign?;
11) cr+x/10; 12) Decision: ~<c?
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representation of the weightage by only one universal con-

stant is an approximation. In general, the weightage will be

“=(;+)+s1(;+}+s2(;+7+”’
where dij is the set of Newtonian path lengths and SO,s~,

s~, ”””, are a set of universal constants.
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